Morphology Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina.
نویسندگان
چکیده
Aluminum (Al) anodization leads to formation of porous structures with a broad spectrum of applications. Naturally or intentionally created defects on Al surfaces can greatly affect pore initiation. However, there is still a lack of systematic understanding on the defect dependent morphology evolution. In this paper, anodization processes on unpolished, polished, and nanoimprinted Al substrates are investigated under high voltages up to 600 V in various acid solutions. A porous structure is obtained on the unpolished and nanoimprinted Al foils with rough surface texture, whereas a compact film can be rationally obtained on the polished Al foil with a highly smooth surface. The observation of surface roughness dependent oxide film morphology evolution could be originated from the high voltages, which increases the threshold requirement of defect size or density for the pore initiation. Electrostatics simulation results indicate that inhomogeneous electric field and its corresponding localized high current induced by the surface roughness facilitate the initiation of nanopores. In addition, the porous films are utilized as templates to produce polydimethylsiloxane nanocone and submicrowire arrays. The nanoarrays with different aspect ratios present tunable wettability with the contact angles ranging from 144.6° to 56.7°, which hold promising potentials in microfluidic devices and self-cleaning coatings.
منابع مشابه
The effect of sulfuric acid on pore initiation in anodic alumina formed in oxalic acid
In this work, a tracer study on pore initiation in anodic alumina in oxalic acid was performed. Effects of some experimental parameters such as applied electrical potential, electrolyte composition and heat pretreatment were evaluated. Electrochemical and morphological experiments were performed using potentiostatic anodizing and scanning electron microscopy (SEM) techniques, respectively. Effe...
متن کاملFabrication of Highly Ordered Gold Nanorods Film Using Alumina Nanopores
A simple method for fabrication of highly ordered gold nanorod film is introduced in this article. The procedure is based on thermal evaporation of gold into a porous anodic alumina film (PAA). The PPA film was fabricated by combining the hard and mild anodization. This combination effectively decreases the processing time of fabrication of highly ordered porous anodic alumina film with c...
متن کاملThe fabrication of ordered nanoporous metal films based on high field anodic alumina and their selected transmission enhancement.
A two-step high field anodization and a controllable barrier layer removing process have been used for the fabrication of porous anodic alumina (PAA) with different morphologies. Based on the PAAs, porous noble metal films with widely tunable pore size and inter-pore distance have been realized by a simple sputtering method. Their morphology and optical properties were studied with a field-emis...
متن کاملFabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method
Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum ox...
متن کاملFabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method
Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum ox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2014